
Bulk Document Parsing

1

Overview:

The project involved parsing a PDF to extract required data and store it in the database for
further use. The client is a clinical research organization and supports the medical industry with
data research and regulatory submissions. The solution enabled the client to extract the
required information: key-value pairs and tabular data and store it in the repository.

Client details:

Name: Confidential | Industry: Transportation & Logistics | Location: USA

Technologies:

Pytesseract, opencv, invoice2data, azure-storage, celery, RabbitMQ

Modules Used:

 Pytesseract: This is used in Non-Searchable PDF parsing. A python wrapper around
Google’s Tesseract performs Optical Character Recognition; i.e. gives a string output for
text in images.

 OpenCV: This is used in Non-Searchable PDF parsing. It performs Computer Vision
operations on an image.

 invoice2data: This is used in Searchable PDF parsing. It uses YAML templates to parse

the data from searchable PDFs and returns the result as CSV, JSON or XML.

 Azure-storage: It is used for storing the PDFs as we needed a structured storage. If the
requirement is an unstructured storage then Azure Blob Storage was used.

 Celery & RabbitMQ: It is used to handle processing of tens of thousands of PDFs using

workers and message queue. Multiple queues with different priorities help to process
high priority PDFs as soon as possible.

Bulk Document Parsing

2

Project Description:

Earlier, the client used to manually search through previous PDF Documents to filter out its
requirements. It lead to cost overruns and was inefficient. After analyzing the client’s need,
team@Mindfire offered to develop a solution that would help the client to parse a PDF and
extract the relevant info. There are two modules available to parse PDFs. Some salient features
are:

Searchable PDF:

 Searchable PDFs result from the application of OCR (Optical Character Recognition) to
scanned PDFs or other image-based documents.

 The solution parses invoices of different companies using the YAML Template. Python’s
invoice2data library uses YAML templates (containing keys and the respective regex to
map the values to these keys) to extract key-value pairs and uses the JSON data for
further operations.

Non- Searchable PDF:

 Non- Searchable PDFs are documents that cannot be searched by text and are created by saving
the PDF file as an image.

 HTML 5 Canvas marks the dimensions of the data to extract, and the JSON File stores the
individual data dimension.

 For parsing, the PDF is converted to an image. OpenCV reads the image and contour detection
to identify the text.

 JSON Template locates the data where images appear, and the OpenCV uses filter operations to
operate on the cropped image.

 Tesseract processes the cropped image for string output which, in turn, is stored in a JSON file
for further operations.

After the initial launch of the application, the team faced two major challenges:

Bulk Document Parsing

3

OCR Output Efficiency

 Earlier, the accuracy of the output was 80% as the OCR faced difficulties in interpreting certain
letters like B, 3, S, $, O, 0 etc.

 The accuracy was improved by the use of image processing before sending the image to OCR
Engine. This resulted in excellent results with 99% accuracy.

Scalability
 After the initial launch of the application, the time taken to parse a single PDF page was

approximately 3 sec. The client’s requirement was about 10,000 pages a day, and the current
speed did not suffice.

 The processing speed was improved with the help of multiprocessing. The team implemented
this with the help of RabbiMQ, a queue server.

 The RabbiMQ parses the invoices in parallel. The application picks up the attachments from the
mail, stores them in the azure server, and adds the task in the queue. The module picks up the
pending tasks from the queue and processes them in parallel.

Bulk Document Parsing

4

Architecture:

Bulk Document Parsing

5

Workflow:

Screenshots:

Screenshot 1: YAML is created for a particular vendor based on the format

Bulk Document Parsing

6

Screenshot 2: Searchable Parser: Template. It has the required fields created by users in YAML according to invoice
format.

Screenshot 3: Marked invoice

Bulk Document Parsing

7

Screenshot6: Processed data

Screenshot 5: Marked Dimensions: JSON Template

Screenshot 4: Filter Settings for JSON

