Benefits of API Testing :

How it assists in faster & better delivery of
software products

Benefits of API
Testing

Monolithic
Architecture vs.
Microservices

API Testing and
Integration with
Microservices

How It Assists in Faster & Better Delivery of Software Products

The development of software and web services continues to adapt and evolve to meet modern demands.
Within digital platforms, we're currently witnessing an important transition from monolithic architecture to
microservices. This new modular approach to software development enables better continuity between services
and more efficient inter-process communication (IPC) within complex applications.

The evolution of microservices has a number of implications for software creation and testing, with an applica-
tion programming interface (API) often used to manage data exchange and allow microservices to coexist with
existing legacy systems. While the evolution of web services is a constant process, occasional leaps manage to
change the landscape and disrupt the development cycle.

Instead of building monolithic applications as a single unit, developers are taking advantage of microservice
capabilities, which are often formally expressed through containerization with APIs. The existence of modular
building blocks with clearly defined communication and data exchange protocols allows for faster and more
efficient software development and more robust testing procedures.

Monolithics vs Microservices

Client Side
Client Side

= 2" A
Server Side / Database Server Side / Database Server Side / Database

Conventional monolithic architecture typically consists of an independent client-side user interface, server-side
business logic, and data access layer. While this single logical executable approach can be extremely powerful,
development, scalability and testing are all compromised.

In contrast, microservices break down individual applications into a number of functional and modular services
that can be completely hidden and reused depending on context and need. While managing this approach can
be challenging, it provides enhanced scalability, faster modification, and more transparent testing with minimal
impact downstream.

In order to understand the relationship between microservices and APIs, it's important to grasp the significance
of modularity within software development. If microservices are individual components within applications or
container ecosystems, then APIs are needed to enable request-response messages and other forms of communi-
cation between modules.

Along with enhanced communication, APIs also enable better integration between systems. Real-world scenarios
are never as clear cut as they are in text books, with companies needing microservices to exist alongside existing
processes and architectural patterns. Microservices are often coupled with APIs in containers, with this necessary
union allowing businesses to implement new modular architectures without risking redundancy and increasing
complexity.

API testing is necessary in order to ensure the functionality, reliability, security, and performance of software sys-
tems. Testing procedures are especially critical in order to integrate microservices with surrounding systems and
ensure cohesion with third-party service-oriented architecture (SOA).

Differences between microservices, APls, and SOAs are fluid and dependent on the surrounding context. While
these concepts all employ similar principles of modularity, they have a different architectural scope. Microservic-
es relate to application architecture, SOA typically operates at the enterprise level by exposing functions as
service interfaces, and APIs are used to integrate systems and provide clients with access to back-end functions.

APIS Vs SOA An APl is a low-level programming interface consisting of subroutine definitions, communication protocols, and
® additional tools for building software. Despite the accuracy of this general definition, the term is mostly used
Services today in reference to specific REST interfaces for web services provided over HTTP. Basically, APIs have become
products in their own right. The key difference between APIs and SOA services is in terms of their scope and
economics. While SOA programs are about reusing functions on the interface level, modern APIs are about creat-
ing new functional and useable interfaces that can be branded as products.

The Benefits of
Early API Testing = & o
API

Testing 38

The successful use of APls depends on the automation and early adoption of testing procedures. While
microservices are internal and single-function applications designed to maximize efficiency, APIs can be exposed
both internally and externally depending on the context. In order to maximize results and speed up delivery
rates, it's important to automate the design and development of APIs and conduct testing from an early stage.
API testing allows you to test the business logic of an application in a way that's independent from the user
interface (Ul).

API Automated Early testing allows you to identify security issues and bugs early in the software cycle before they lead to
additional problems and spiraling costs. The ideal testing scenario involves the test pyramid, with unit tests
Test|ng VS. UI followed by component tests, integration tests, APl tests, and finally, GUI tests. While programmers are

comfortable conducting unit tests during development and application testers work at the GUI level, API testing

Automated TeSting is often under-resourced or completely ignored.

By working from the bottom of the pyramid up and testing APIs early in the development cycle, software kinks
can be ironed out before they snowball and affect the end user. Also known as test automation but not synony-
mous with it, Ul automated testing is designed to mimic the actions of the end user. By scripting common ac-
tions involving the writing and reading of pages, fields and elements, Ul tests attempt to identify issues starting
from the front-end and going backwards.

While Ul tests are a practical way to put yourself in the shoes of the end user, they are also slow, inefficient,
expensive and cumbersome. The code base of a Ul is typically much larger than that of an API, with Ul elements
also more fragile and prone to failure. Along with being an inefficient and expensive way to work, automated Ul
testing is also highly impractical compared to API testing. Instead of working from the outside-in, API testing
allows you to test business logic from the inside-out in a way that ensures 100 percent test coverage.

API Testing for
Improved Security
and Performance

Continuous API
Testing in DevOps
and Containers
Environments

API testing offers numerous advantages over Ul testing and related approaches, especially when it comes to
security and performance. While an API can still be hacked, dealing with security and access issues at this level
allows you to identify vulnerabilities before they affect the end user. There are lots of ways to identify attack
vectors, including fuzzing or fuzz testing, command injection, testing for unauthorized endpoints and methods,
and parameter tampering. Automated API testing suites need to be comprehensive enough to handle any even-
tuality and flexible enough to adapt to changing scenarios.

Automated testing at the API level also offers a number of advantages in terms of performance. Whether you're
conducting functional tests or turning up the dial and running performance tests, API testing allows you to work
through known issues in a way that's divorced from the user experience. While this disconnection can be danger-
ous, the ability to isolate API load testing and monitoring from the Ul helps testers to check the overall speed and
performance of software in a way that ensures accurate test results.

APl | —

TESTING
[e=m

API testing is relevant to a wide range of industries and software environments, including DevOps development
that focuses on continuous delivery, continuous deployment, and continuous integration. Continuous delivery
involves small build cycles with almost immediate feedback between development and delivery. The aim of this
development paradigm is for code to be ready and waiting at any given time. Continuous deployment involves
similar principles of speed and efficiency, only this time the focus is on automatic deployment with every change
to code. Continuous integration involves merging code from multiple developers to one branch in order to avoid
future conflicts.

Robust API testing has an important effect on DevOps practices and containers environments, especially those
that integrate microservices with APIs. Whether you're focused on improved efficiency, faster development,
improved data exchange management, or the ability for microservices to co-exist with existing legacy systems,
API testing ensures the faster and better delivery of software products.

Mindfire Solutions is a specialist in offshore software development work. In the last 19+ years, we have been successfully served the needs of more
than 1000+ clients dispersed across the globe.

Visit us at: www.mindfiresolutions.com

