
 White Paper: Carbonization

info@mindfiresolutions.com Page 1 of 12

MacOS X, Your Existing Applications and Carbon

Shahzad Akhtar
Mindfire Solutions (http://www.mindfiresolutions.com)

Oct 5th, 2001

Summary: This article talks about the impact of OS X on existing applications in general
and then goes on discussing the actual steps involved and issues faced in porting of a
particular application to Carbon.

INTRODUCTION 2

AN EXPERIENCE IN CARBONIZATION 4
Fact sheet of the existing application 4

In preparation 4
No 68K Dependencies 4
Carbon Dater 4
Updating to Current Universal Interface 5
Moving the Existing Project to CW6 5
Updating to Latest WASTE version(2.0) 5
Opaque Data Structures 6

Classic and Carbon targets 7
Preparing Carbon Target 7
Renamed/Modified API’s 7
Standard File Dialogs vs. Navigation Services 8
Printing 8
CD Detection, InterfaceLib vs. IOKit 8
Using Casting Functions 9

Running on OS X 9
Adding a ‘plst’ 0 Resource 9

Specific OS X Issues 10
GUI Tweaking 10
Conditional File Quit Menu 10
Double Buffered Windows 10
Theme Brush and Background Color 11
LBevelButton, Indistinguishable Normal/Pushed state 11
LTableView Hiliting Problem 11

CONCLUSION 12

http://www.mindfiresolutions.com
mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 2 of 12

Introduction

So, Mac OS X is finally there which many us were eagerly awaiting for. But, wait a
minute, what will happen to all those excellent applications written for Mac? “Are those
going to run on OS X?” Well, the answer is Yes and No. Yes, because most of them will.
No, because some of them may not run at all and even those, which will run, won’t be
running in True Native OS X Environment.

OS X has a Classic Environment also called “Software Compatibility” environment,
which makes it possible for the latest version of Mac OS 9, and all the applications
capable of running on that version, to run on a Mac OS X system. This means user can
still use his or her legacy applications until a complete transition to Mac OS X occurs.
This classic environment more or less gives same look and feel as that of a "native" Mac
OS 9 system.

To the Mac OS 9 operating system that OSX hosts, Classic appears as a new hardware
platform. It implements hardware services using the Mac OS X kernel environment
(particularly the I/O Kit). Hence, those native Mac OS 9 programs, which attempt to do
anything directly at the lower layers of the system, will not run in the Classic
environment. This means a number of different things but generally, programs that
modify or rely on Mac OS internals below the hardware abstraction provided by the
kernel environment will not work in the Classic environment.

Detailed discussion about Classic environment can be found at
http://gemma.apple.com/techpubs/macosx/Essentials/SystemOverview/InstallIntegrate/T
he_Classic_Application.html

What the above means is that:

? A native OS 9 program may not run in classic at all, if it directly depends upon
low-level Mac OS internals.

? Even if it runs, it will not be running under OS X environment rather it will run
within classic environment running on a OS X system. For the user, at the bottom
level, it means the same OS9 like look and feel and no OS X new Aqua user
interface.

The obvious next question, what, if we want to run our application in true OS X
environment. The answer is port it using Cocoa, the object-oriented, native Mac OS X
development framework. This essentially translates into a lot of rework plus the fact that
the new application will only run on OS X, which means different versions will have to
be maintained for OS X and OS9.

http://gemma.apple.com/techpubs/macosx/Essentials/SystemOverview/InstallIntegrate/The_Classic_Application.html
mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 3 of 12

Apple has though, an elegant solution in form of Carbon that handles these issues,
minimum porting efforts and the newly ported application running simultaneously on OS
X and earlier versions.

The Carbon APIs can be used to write Mac OS X applications that also run on previous
versions of the Mac OS (8.1 or later). While Carbon allows applications to take
advantages of Mac OS X features such as multiprocessing support and the Aqua user
interface, it is specifically designed to allow compatibility with older versions of the Mac
OS. The Carbon APIs are based on existing Mac OS APIs. Because it includes most of
the (about 95%) existing Mac OS APIs, which a typical application uses, converting to
Carbon is a straightforward process. Apple has provided tools and documentation to
determine the changes needed to make (http://developer.apple.com/carbon/).

The documents that should be of interest for people going for carbonization are:

System architecture
Mac OS X System Overview (pdf)
Carbon Porting Guide

The “Carbon Porting Guide.pdf” is the detailed document giving step-by-step process
and discussing the issues in converting an existing application to carbon application.

While the above document talks about the steps involved and general issues faced in
carbonization of a typical application running on earlier versions of Mac OS9, what I am
going to present here is the actual steps involved and the important issues faced in
carbonization of a particular application, which was completed a few weeks ago.

http://developer.apple.com/carbon/
http://developer.apple.com/macosx/architecture/
http://developer.apple.com/techpubs/macosx/SystemOverview/SystemOverview/SystemOverview.pdf
http://developer.apple.com/techpubs/macosx/Carbon/CarbonPortingTools/carbonportingtools.html
mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 4 of 12

An experience in Carbonization

Fact sheet of the existing application

Type of application: Desktop Application
Size: About 100,000 loc
Project: CodeWarrior IDE 4.0
Framework/Libraries: PowerPlant 2.0, WASTE Text Engine1.3
Resource Editor: PP Constructor 2.4.5
Interface: Universal Headers 3.2
Development Environment: Mac OS 9.0.3
Duration: 3 weeks
CarbonLib SDK: Version 1.3.1

In preparation

No 68K Dependencies
Mac OS X requires 100% native PPC code, so we need to remove any dependencies on
68K instruction. Fortunately, our application didn’t have any of those and hence no steps
here.

Carbon Dater
To start with, Apple has provided a tool called Carbon Dater to analyze ones existing
application/libraries for Carbon Compatibility. Carbon Dater produces .CCT file which
needed to be mailed to carbondating@apple.com where after comparing it with the API
database Apple has made, an html format report is mailed back, which can be used to
have information about the scope of the efforts involved in the conversion.

Result of running Carbon Dater:

Supported APIs - 85.3%
Supported with Modifications - 0.7%
Supported But Not Recommended - 4.8%
Unsupported API - 9.2%

That meant 14.7 % of the code needed modifications, but the effective modification effort
was reduced by the fact that these changes involved two different things. Getting the
carbonized versions of the 3rd Party libraries (PP & WASTE here) and then making
necessary changes to our own code.

mailto:carbondating@apple.com
mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 5 of 12

The latest carbonized versions available of the above two libraries were PowerPlant 2.1
and WASTE 2.0. PP2.1 was not available separately rather was being shipped with new
release of Metrowerks CodeWarrior 6.

Updating to Current Universal Interface
Although it isn’t a requirement, doing so makes the transition easier. For us, it was the
same step as moving our application to CW6, since it includes Universal Interface 3.3.2.

Moving the Existing Project to CW6
This effectively meant multiple transitions.

CW IDE 4.0 to 4.1
PowerPlant Constructor 2.4.5 to 2.5
PP 2.0 to PP 2.1
Universal Interface 3.2 to 3.3.2

The first two were just matter of installing CW6 and then clicking the earlier project file.
The CodeWarrior’s Conversion Wizard automatically converted the project to the current
version after confirmation.

By that time Apple was out with Universal Interface 3.4, so it was natural to update the
Universal Interface 3.3.2 included with CW6. This had some implications, though, on
building PowerPlant source code especially with ACCESSORS_ARE_FUNCTIONS flag
set to TRUE (see Opaque Data Structure below). This was solved by making some
modifications here and there in PP Code, mainly related to casting of GrafPtr &
CGrafPtr and use of old/new API names.

Updating to Latest WASTE version(2.0)

Waste 1.3 to Waste 2.0
CWASTEEdit to WTextView & Wtext

Although, the transition from WASTE 1.3 to WASTE 2.0b3 (which is carbonated) meant
just replacing the libraries, the real change was concerning the wrapper class used
(CWASTEEdit). CWASTEEdit was split into two classes; WText, which wraps all the
public WASTE calls and maintiains the WEReference handle and WTextView, a PPlant
view, which inherits from WText and implements the interface between WASTE and
PPlant. Plus the Ppob resource for the WTextView, has also been changed (Class ID
NWSt). This meant replacing CWASTEEdit with WTextView, wherever it had been used
(which was quite a lot) in the code and changing the Class ID in all the ‘ppob’ resources
using CWASTEEdit.

The approach taken was, write a new CWASTEEdit class derived from new WTextView
class, give it the same Class ID as the old CWASTEEdit class. Then add the appropriate
interface for those functions which are missing from WTextView (like defining our own

mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 6 of 12

CWASTEEdit::InsertPtr(), which just calls the corresponding function
WTextView::InsertText()). This enabled us to retain all the existing CWASTEEdit related
code and resource.

With all the dependencies taken care of, the time was to attack our own code. The aim
would be to try to maintain the same code base for Classic and Carbon Target and it was
surprisingly easy.

Opaque Data Structures
One of the major changes in Carbon is that it limits direct application access to some Mac
OS data structures. These include WindowPort, GrafPort, QDGlobals and many others
frequently used data structures. These data structures are called Opaque Data Structure
and Carbon uses different Accessor Functions to get/set their values. These accessor
functions are also available as a static library CarbonAccessors.o, an application linking
against InterfaceLib and other non-Carbon libraries can continue to build with them and
still use the Accessor Functions defined in CarbonAccessor.o. This meant, a few more
steps forward towards Carbonizing the code without actually separating the classic and
carbon target.

The interfaces for these accessor functions are available through Universal Interface if the
flag ACCESSOR_CALLS_ARE_FUNCTIONS is set to 1.

Some of the accessor functions are also defined in PPlant’s UTBAccessor.h file inline,
when the above flag is 0 (By the way, It results in ‘illegal function overloading’ error for
three accessor functions already defined in MacWindows.h with Universal Interface 3.4)

As the next step CarbonAccessor.o was added to the existing classic link and each of the
source code was modified to use Carbon accessor functions, with the following
conditional macro at the top.
 #define ACCESSOR_CALLS_ARE_FUNCTIONS 1

Well, this wasn’t the case actually, rather the above line was added directly in the
existing precompiled header (.pch) which gave us the access to functions across all the
source file, but with an implication. On adding the above line to the precompiled header,
the content of PPlant’s UTBAccessors.h was ignored and some of the PP file refused to
compile. With a little change in the above file, everything settled.

The above macro gave access to accessor functions, but this didn’t ensure that none of the
Opaque toolbox data structures is being used any more. For this another macro is used

#define OPAQUE_TOOLBOX_STRUCTS 1

This couldn’t be placed in precompiled header file because PP still uses Opaque data
structures directly for non-carbon targets.

mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 7 of 12

At this point, none of the code used Opaque Toolbox data structures, but by calling the
accessor functions in CarbonAccesor.o (or some from PP’s UTBAccessors.h). The
application still linked against the classic libraries and it will run on any Mac OS release
as it used to do, because it doesn’t require the CarbonLib at runtime.

Classic and Carbon targets

Preparing Carbon Target
Preparing a Carbon target was just about creating a new target by copying the existing
Classic target from the Targets tab of CW IDE. Precompiled headers were replaced with
appropriate ‘Precompiled headers for Carbon’. InterfaceLib and other classic libraries
were removed from the new target giving way to CarbonLib. CarbonAccessor.o was also
no longer needed in presence of CarbonLib.

For carbon targets, PP defines the following macros in its precompiled header file.

#define PP_Target_Carbon 1
#define PP_Target_Classic (!PP_Target_Carbon)
#define TARGET_API_MAC_CARBON PP_Target_Carbon
#define TARGET_API_MAC_OS8 PP_Target_Classic

TARGET_API_MAC_CARBON macro is used by the Universal Interface header files to
decide about the API set available to the Carbon target.

There were some compilation problems with the PP source files for the above carbon
target, mainly related to typecasting and use of some older routines and macro calls to the
mixed mode manager, which had to be replaced with UPP Accessor Functions.

Renamed/Modified API’s
Again, these were surprisingly few because most of the code used PP’s utility wrapper
classes instead of direct calls. With PP carbonized, the task was made easier.

Two non-supported APIs, which were used mostly in the code were, well, c2pstr and
p2cstr. One solution was to write them of our own calling the new c2pstrcpy and
p2cstrcpy (they take two arguments, source and destination pointers) from them. Easier
way though, was to include the following lines for carbon target in the some prefix file,
which makes the older APIs available to the carbon target as macros (again no actual
change in the code).
 #if PP_Target_Carbon

 #define OLDP2C 1
#endif

mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 8 of 12

Some of the older menu-handling APIs are not available in carbon so, they needed to be
replaced with the corresponding APIs (EnableItem by EnableMenuItem). These Menu
related codes were mostly at one place instead of being spread all along, hence it was
easier just replacing them with the newer calls in-place. These changes were valid for
classic target also because replacing APIs are available in MenusLib 8.5 and later.

Some of the scrap related APIs have also changed in carbon, but again, replacing the
direct API call with PP’s UScrap scarp utility functions, did the task.

Standard File Dialogs vs. Navigation Services
In carbon Navigations services replaces the standard File Package. In PP terms, it meant
removing UConditionalDialogs.cp and UClassicDialogs.cp from the carbon target and
adding UNavServicesDialogs.cp. Code wise, all file handling using UStandardFiles and
UConditionalDialogs had to be replaced conditionally (#if PP_Target_Carbon) with
UNavServicesDialogs.

Apart from carbon compatibility, Navigation services offer some enhancement over
Standard File Package, so using it for classic targets whenever possible, is a good thing to
do.

Printing
Carbon has a new Printing Manager defining set of APIs, which replaces that of original
Printing Manager. Carbon Printing Manager allows applications to print both on Mac OS
8 & 9 with existing printer drivers and on Mac OS X with new printer drivers.

Our code was using UPrintingMgr class from PP to perform the printing task, which is
included in the list of will be obselete files in PP 2.1. The new interface for printing in PP
2.1 is UPrinting.h, which has three different implementation files:

UClassicPrinting, UcarbonPrinting and USessionPrinting

The new classes are LPrintSpec and StPrintContext, StPrintSession and UPrinting.
Replacing the UPrintingMgr with UPrinting worked for both classic and carbon targets
and ensured same code base.

CD Detection, InterfaceLib vs. IOKit
Absence of Device Managers in Carbon made this task little difficult. The existing
application was making calls to Device Manager, which is not a part of Carbon, as it
cannot run on Mac OS X. The replacement, I/O Kit, is a Mac OS X technology, which
cannot run on Mac OS 8 and 9. The solution, hence, was to conditionally fork the code
and make calls to either, the Device Manager or I/O Kit, depending upon the platform it
was running on.

mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 9 of 12

Forking the code like this, presented some build issues, like while building for carbon,
the Universal Interface conditionalized out any non-carbon functions (device manager’s
calls). Attempting to call any of these functions generated compile error indicating
missing prototypes. The solution was to declare the appropriate prototypes as required
(from I/O Kit from OS X and from device manager for earlier OS) in our own code and
then dynamically loading the shared library and getting the addresses of the needed
symbols. Like, for OS 8&9, GetSharedLibrary and FindSymbol were used respectively to
load the InterfaceLib and obtain the function pointers for GetDrvQHdr & PBStatusSync
(on OS X, I/O Kit was used in the same way).

Using Casting Functions
Values of type DialogPtr, WindowPtr & GrafPtr can no longer be directly casted, but
instead “Casting Functions” like GetWindowPort(WindowPr port) window should be
used to obtain the value of one from another. Direct casting wouldn’t affect compilation,
but would cause crash on OS X.

At this stage, all the functional subsystems of the application were ready with all the
necessary ‘Carbon Compatible Modifications’ and the next step was to build the carbon
version of the application linked against CarbonLib. This new application would run on
pre OS X releases of Mac OS (8.6 and later), when CarbonLib system extension is
installed.

Running on OS X

Adding a ‘plst’ 0 Resource
On Mac OS X, carbon applications, which do not contain ‘plst’ 0 resource won’t be
recognized as carbon application. To ensure this, the application has to include a ‘plst’ 0
or ‘carb’ 0 resource.

With these, the application could now run on OS X as a carbon application, i.e. not in
classic environment. It would have got the new look and feel of the aqua interface,
translucent windows/menus, glowing rounded aqua buttons etc.

Although the application was able to run on Mac OS 8&9 and OS X both, many OS X
specific issues still needed to be resolved.

mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 10 of 12

Specific OS X Issues

GUI Tweaking
Visually, Mac OS X is simply stunning with its Aqua Human Interface. Color, depth,
transparency and animation are used to their full. To ensure that the new application
looked good (ok, great!) on OS X, it needed some tweaking in the resource.

Though the development was going on OS 9, editing and tweaking of the resource was
done on OS X directly using PP Constructor 2.5. The reason was to avoid the long cycle
of changing the resource, building the application on OS 9, copying and running it on OS
X machine, just to see the effects of the changes.

Conditional File Quit Menu
Carbon application running on OS X, automatically have a Quit menu under the
application menu, provided by the Aqua interface. Hence, the Quit menu added to File
Menu in the application became redundant on X. However, because for Mac OS 8 and 9
this menu was still needed, it had to be removed from the menu conditionally, when the
application was running on X.
 MyApp::MakeMenuBar() {
 Lapplication::MakeMenuBar();
 if(UenvironMent::GetOSVersion() >= 0x00001000)
 // remove the File/Quit menu

}

Double Buffered Windows
In Mac OS X, all windows are buffered, that is, a window’s content is written first to a
buffer, which is then periodically transferred to the screen by the Window Manager. This
was actually a plus point and resulted in smoother graphics but for some cases. Like, if
during one event processing, a rectangle was painted and then erased within a loop to
give a blinking effect, then the painted rectangle never appeared. All drawing calls
resulted in updating the contents of the buffer instead of the screen and during next event
processing, only the final state of the buffer is transferred to the screen.

The first solution applied was to explicitly call WaitNextEvent with updateMask during
every iteration of the loop, but that was rather slow. Preferred way was to call

QDFlushPortBuffer(currentPort, dirtyRegion);

to flush the drawing to the screen immediately, whenever QDIsPotBuffered(port)
returned true (returns false on Mac OS 8/9).

mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 11 of 12

Further, if anything is drawn directly into a window’s pixel map (SetCPixel() in our
case), QuickDraw cannot tell which parts of the pixel map are dirty, so they may not be
updated to the screen in next refresh. To work around, QDFlushPortBuffer should be
called explicitly with nonempty region parameter describing the modified.

Theme Brush and Background Color
The following code resulted in a black rectangle on OS 8 and 9 but with Theme
background brush on OS X, it wasn’t the case.
 RGBBackColor(&rgbBlack);

EraseRect(&rect);

The fix was to use the following code instead of the above calls.

RGBForeColor(&rgbBlack);
PaintRect(&rect)

LBevelButton, Indistinguishable Normal/Pushed state
Due to the translucency on Mac OS X, it was difficult to distinguish the pushed state of a
‘Sticky Bevel Button with picture’, from that of normal un-pushed state even with ‘large
bevel size’. Hence, different images were used for pushed and normal state of the button.
Since, PP constructor has no option for this at the design time, a new class derived from
LBevelButton had to be included for dynamically changing the picture for normal/pushed
state.

LTableView Hiliting Problem
This was an interesting problem in the sense that it took us some time to realize that it’s a
problem (which was initially discarded as new Aqua interface feature). For all the
LTableView used in the application, the hiliting was not proper. Instead of a hiliting
rectangle with the current hiliting color, there were just a few evenly spaced horizontal
lines with the hiliting color.

The reason was, since LTableView didn’t have their own background(it’s a view), hiliting
was being applied on the underlying window’s theme background rather. On OS X, the
background theme brush has horizontal lines pattern with some white line in between.
Hiliting was applied for the white part of the background only giving few horizontal
lines.

The solution was to give LTableView its own background color (white) by overriding it.
With white background color for the tables, the proper hiliting rectangle was back as it
used to be on Mac OS 8 and 9.

mailto:info@mindfiresolutions.com

 White Paper: Carbonization

info@mindfiresolutions.com Page 12 of 12

Conclusion

Although these were the issues related to a particular application, they are typical enough
to give a general insight about the differences in technologies used. This could also be
helpful for starters, if they don’t want to straightforward dig into 164 pages of “Carbon
Porting Guide.pdf”. Nevertheless, if not anything else, somebody out there might be
lucky enough to find his or her problem discussed here. (Nothing bad in being optimistic
after putting some efforts in writing these 12 pages.)

mailto:info@mindfiresolutions.com

